HALF YEARLY EXAMINATION - 2025

MARK: 90

STD: 12

MATHEMATICS

TIME: 3 hrs

PART – A

CHOOSE THE CORRECT ANSWER:

 $20 \times 1 = 20$

1) If
$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
 and $A(adj A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then $k = (a) 0$ (b) $\sin\theta$ (c) $\cos\theta$ (d) 1

If $0 \le \theta \le \pi$ and the system of equations $x + (\sin \theta)y - (\cos \theta)z = 0$, $(\cos \theta)x - y + z = 0$, $(\sin \theta)x + y - z = 0$ has a non-trivial solution then θ is

- (a) $\frac{2\pi}{3}$ (b) $\frac{3\pi}{4}$ (c) $\frac{5\pi}{6}$

The conjugate of a complex number is $\frac{1}{i-2}$. Then, the complex number is

- (a) $\frac{1}{i+2}$ (b) $\frac{-1}{i+2}$ (c) $\frac{-1}{i-2}$ (d) $\frac{1}{i-2}$

The value of $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$ is

- (a) $cis \frac{2\pi}{3}$ (b) $cis \frac{4\pi}{3}$ (c) $-cis \frac{2\pi}{3}$
- (d) $-cis \frac{4\pi}{3}$

If α , β and γ are the roots of $x^3 + px^2 + qx + r$, then $\sum_{\alpha=0}^{\infty} a$ is

- (a) $-\frac{q}{r}$ (b) $-\frac{p}{r}$ (c) $\frac{q}{r}$ (d) $-\frac{q}{p}$

The polynomial $x^3 - kx^2 + 9x$ has three real roots if and only if, k satisfies 6)

- (a) $|k| \le 6$ (b) k = 0 (c) |k| > 6 (d) $|k| \ge 6$

7) $\sin^{-1}\left(\tan\frac{\pi}{4}\right) - \sin^{-1}\left(\sqrt{\frac{3}{x}}\right) = \frac{\pi}{6}$. Then x is a root of the equation

- (a) $x^2 x 6 = 0$ (b) $x^2 x 12 = 0$ (c) $x^2 + x 12 = 0$ (d) $x^2 + x 6 = 0$

The value of $cos^{-1}x + cos^{-1}(-x)$ is 8)

- (b) TT
- (c) $2\cos^{-1}x$
- (d) $cos^{-1}x$

The area of quadrilateral formed with foci of the hyperbolas 9)

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ is

- (a) $4(a^2 + b^2)$

- (b) $2(a^2 + b^2)$ (c) $a^2 + b^2$ (d) $\frac{1}{2}(a^2 + b^2)$

10) If the two tangents drawn from a point P to the parabola $y^2 = 4$ 2 are at right angles then the locus

- (a) 2x + 1 = 0
- (b) x = -1 (c) 2x 1 = 0
- (d) x = 1 12-HSM MAT EM -1

11)	The volume of the parallelepiped with its edges represented by the vectors-
11)	$\hat{i} + \hat{j}, \hat{i} + 2\hat{j}, \hat{i} + \hat{j} + \pi \hat{k}$ is
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{\pi}{4}$
12)	If the length of the perpendicular from the origin to the plane $2x + 3y + \lambda z = 1$, $\lambda > 0$ is $\frac{1}{5}$, the
	the value of λ is
	(a) $2\sqrt{3}$ (b) $3\sqrt{2}$ (c) 0 (d) 1
13)	The volume of a sphere is increasing in volume at the rate of $3\pi \text{cm}^3/\text{sec}$. The rate of change of
	radius when radius is $\frac{1}{2}$ cm
	(a) 3cm/s (b) 2cm/s (c) 1cm/s (d) $\frac{1}{2} \text{cm/s}$
14)	The slant asymptotes for the function $f(x) = \frac{x^2 + 3x + 2}{x - 1}$ is
	(a) $y = x + 4$ (b) $y = x + 5$ (c) $y = x + 2$ (d) $y = x + 1$
15)	The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?
	(a) $\frac{1}{31}$ (b) $\frac{1}{5}$ (c) 5 (d) 31
16)	If $u(x, y) = x^2 + 3xy + y - 2019$, then $\frac{\partial u}{\partial x}$ is equal to
	If $u(x, y) = x^2 + 3xy + y - 2019$, then $\frac{\partial u}{\partial x}\Big _{(4, -5)}$ is equal to (a) -4 (b) -3 (c) -7 (d) 13
17)	The value of $\int_{0}^{2/3} \frac{dx}{\sqrt{4-9x^2}}$ is
	(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) π
18)	If $\int_0^1 x^n (1-x)^n dx = \frac{1}{140}$, then the value of n is
	(a) 1 (b) 2 (c) 3 (d) 4
19)	The slope at any point of a curve $y = f(x)$ is given by $\frac{dy}{dx} = 3x^2$ and it passes through $(-1,1)$
	men are equation of the curve is
	(a) $y = x^3 + 2$ (b) $y = 3x^2 + 4$ (c) $y = 3x^3 + 4$ (d) $y = x^3 + 5$
20)	The order and degree of the differential equation $\frac{d}{dx} \left(\frac{d^2y}{dx^2} + 1 \right) = x$ is
	(a) 2, 2 (b) 2, 1 (c) 3, 2 (d) 3, 1
7	$\underline{PART} - \underline{B}$
ANS	SWER ANY SEVEN QUESTIONS (Q.NO: 30 IS COMPLIE SORVE
21.	Find the rank of the matrices $\begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & -6 \\ 5 & 1 & -1 \end{bmatrix}$ 7 X 2 = 14
	13 1 -11 1-10 M MA1 EW -2

- 22. Simplify $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3$ into rectangular form.
- Show that the polynomial $9x^9 + 2x^5 x^4 7x^2 + 2$ has at least six imaginary roots.
- 23. Find the value of $\sec^{-1}\left(-\frac{2\sqrt{3}}{3}\right)$. 24.
- Obtain the equation of the circle for which (3,4) and (2,-7) are the ends of a diameter.
- If the vectors \vec{a} , \vec{b} , \vec{c} are coplanar, then prove that the vectors $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ are also coplanar. 25.
- Using the Rolle's theorem, determine the values of x at which the tangent is parallel to the x axis 26.
- $f(x) = x^2 x, x \in [0,1]$
- Evaluate: $\int_0^{\frac{\pi}{2}} \sin^5 x \cos^4 x \, dx.$
- Find the differential equation corresponding to the family of curves represented by the equation $y = Ae^{8x} + Be^{-8x}$, where A and B are arbitrary constants.
- Find the approximate change in the volume V of a cube of side 2 meters caused by increasing the side by 2%.

PART - C

ANSWER ANY SEVEN QUESTIONS (Q.NO: 40 IS COMPULSORY):-

Test for consistency and if possible, solve the following systems of equations by rank method.

$$2x + 2y + z = 5$$
, $x - y + z = 1$, $3x + y + 2z = 4$

- Show that the equation $z^2 = \bar{z}$ has four solutions.
- Solve the equation $x^3 9x^2 + 14x + 24 = 0$ if it is given that two of its roots are in the ratio 3: 2.
- Find the domain of the function $f(x) = \sin^{-1}\left(\frac{x^2+1}{2x}\right)$
- Prove that the length of the latus rectum of the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is } \frac{2b^2}{a}.$$

- Find the absolute extrema of the function $f(x) = 3\cos x$ on the closed interval $[0,2\pi]$.
- 37. If $u(x, y) = \frac{x^2 + y^2}{\sqrt{x + y}}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2}u$.
- Evaluate: $\int_0^1 |5x 3| dx$.
- Suppose a person deposits ₹10,000 Indian rupees in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?
- Find the shortest distance between the skew lines $\vec{r} = (\vec{i} \vec{j}) + \lambda (2\vec{i} + \vec{j} + \vec{k})$ and 40.

$$\vec{r} = (\vec{i} + \vec{j} - \vec{k}) + \mu(2\vec{i} - \vec{j} - \vec{k})$$

12-HSM MAT EM -3

PART - D

ANSWER ALL THE QUESTIONS :-

 $7 \times 5 = 35$

a. Find the vertex, focus, directrix, and length of the latus rectum of the parabola $x^2 - 4x - 5y - 1 = 0$.

(OR)

- b. The region enclosed between the graphs of y = x and $y = x^2$ is denoted by R, Find the volume generated when R is rotated through 360° about x-axis.
- 42 a. Find the vector parametric form and Cartesian form of the equation of the plane passing through the points (-1, 2, 0), (2, 2, -1) and parallel to the straight line $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$.

b. If F is the constant force generated by the motor of an automobile of mass M, its velocity v is given by $M\frac{dv}{dt} = F - kv$, where k is a constant. Express v in terms of t given that v = 0 when t = 0.

43. a. Find the area of the region bounded by the line y = 2x + 5 and the parabola $y = x^2 - 2x$.

(OR

- b. Prove by vector method that $sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$.
- 44. a. A hollow cone with base radius a cm and height b cm is placed on a table. Show that the volume of the largest cylinder that can be hidden underneath is $\frac{4}{9}$ times volume of the cone.

(OR)

- b. A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16m, and the height at the edge of the road must be sufficient for a truck 4m high to clear if the highest point of the opening is to be 5m approximately. How wide must the opening be?
- 45. a. If $w(x, y, z) = x^2 + y^2 + z^2$, $x = e^t$, $y = e^t \sin t$ and $z = e^t \cos t$, find $\frac{dw}{dt}$.
 - b. Prove that the ellipse $x^2 + 4y^2 = 8$ and the hyperbola $x^2 2y^2 = 4$ intersect orthogonally.
- 46. a. If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ and 0 < x, y, z < 1, then show that $x^2 + y^2 + z^2 + 2xyz = 1$.

(OR)

- b. Solve: $(1+x^3)\frac{dy}{dx} + 6x^2y = 1 + x^2$.
- 47. a. Solve the following system of linear equations

2x - y + z = 7, 3x + y - 5z = 13, x + y + z = 5 by matrix inversion method.

(OR)

b. If z = x + iy and $arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$, show that $\sqrt{3} x^2 + \sqrt{3} y^2 - 2y - \sqrt{3} = 0$.