www.freetnbooks.com

Virudhunagar District

Common Halfy Yearly Examination, - 2025

Standard 12

Time: 3.00 Hours

MATHEMATICS

Marks: 90

Part - I

Choose the best answer:

20x1=20

1) If
$$A = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5} \end{pmatrix}$$
 and $A^T = A^{-1}$, then the value of x is

- a) -4/5
- b) $-\frac{3}{5}$
- c) $\frac{3}{5}$ d) $\frac{4}{5}$
- If A is an invertible matrix of order 2 then det (A⁻¹) is equal to
 - a) det (A)
- b) $\frac{1}{\det(A)}$
- c) 1
- d) 0
- 3) The conjugate of a complex number is $\frac{1}{i-2}$. Then the complex number is
- a) $\frac{1}{i+2}$ b) $\frac{-1}{i+2}$ c) $\frac{-1}{i-2}$ d) $\frac{1}{i-2}$

- 4) The value of $\frac{1+\sqrt{3}i}{1-\sqrt{3}i}$ is
- a) $cis^{2\pi/3}$ b) $cis^{4\pi/3}$ c) $-cis^{2\pi/3}$ d) $-cis^{4\pi/3}$
- 5) The number of positive zeros of the polynomial $\prod_{r=0}^{n} n_{C_r} (-1)^r x^r$ is
- b) n
- c) < n

- 6) $\sin^{-1}(2\cos^2x-1) + \cos^{-1}(1-2\sin^2x) =$
 - a) 7/5
- b) $\frac{\pi}{4}$
- 7) The eccentricity of the ellipse $(x-3)^2+(y-4)^2=\frac{y^2}{9}$ is
- b) $\frac{1}{3}$
- c) $\frac{1}{3\sqrt{2}}$ d) $\frac{1}{\sqrt{3}}$
- 8) If y = mx+c is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ then

 - a) $c^2 = a^2m^2 + b^2$ b) $b^2 = c^2 + a^2m^2$ c) $c^2 = a^2m^2 + m^2$
- d) $c^2 = a^2 m^2 b^2$
- 9) Distance from the origin to the plane 3x-6y+2z+7=0 is
 - a) 0
- c) 2
- d) 3
- 10) If a = i + j + k, b = i + j, c = i and $(a \times b) \times c = \lambda a + \mu b$, then the value of λ+µ is
 - a) 0
- b) 1
- c) 6
- d) 3

11) The point of inflection of the curve y = (x-1)³ is

a) (0, 0)

b) (0, 1)

d)(1,1)

12) The vertical asymptote of $f(x) = \frac{x^2}{x+1}$ is

a) x = -1

d) y = -1

13) Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is

a) x + 1/2

b) $-x + \frac{\pi}{2}$ c) $x - \frac{\pi}{2}$

14) The value $\frac{\pi}{0}\cos^3 3x \, dx$ is

a) $\frac{2}{3}$

b) 2/9

c) 1/9

15) $\frac{a}{0} \frac{f(x)}{f(x) + f(a - x)} dx =$

a) a

b) 0

d) 2a

differential equation the 16) The order of and degree

 $\frac{d^4y}{dx^4}^3 + 4 \frac{dy}{dx}^7 + 6y = 5\cos 3x$ is

a) 4, 7

b) 4, 3

c) 3, 7

17) If $f(x) = \begin{cases} 2x & 0 \le x \le a \\ 0 & \text{otherwise} \end{cases}$ is a probability density function of a random variable, then the value of a is

b) 2

c) 3

18) If in 6 trials, x is a binomial variable which follows the relation 9P(x = 4) = P(x = 2)then the probability of success is

a) 0.125

b) 0.25

c) 0.375

d) 0.75

19) Subtraction is not a binary operation in

a) R

c) N

d) Q

20) Which one is the contrapositive of the statement (p ∨ q) → r?

a) $\neg r \rightarrow (\neg p \land \neg q)$

b) $\neg r \rightarrow (p \lor q)$

c) $r \rightarrow (p \land q)$

Part - II

Answer any 7 questions: Question no. 30 is compulsory:

21) Find the rank of the matrix $\begin{pmatrix} 6 & 0 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}$

22) Write in rectangular form $\frac{10-5i}{6+2i}$

- 23) Find the principal value of $\sin^{-1} \sin \frac{5\pi}{4}$
- 24) Obtain the equation of the circle for which (3, 4) and (2, -7) are the ends of the diameter.
- 25) Evaluate: $\lim_{x \to 1} \frac{x^2 3x + 2}{y^2 4x + 3}$
- 26) If $f(x, y) = x^3 3x^2 + y^2 + 5x + 6$, then find f_x at (1, -2)
- 27) Evaluate: x5e-3x dx
- 28) Solve: $\frac{dy}{dx} + 2y = e^{-x}$
- 29) ¬p v q construct the truth table.
- 30) Find the acute angle between the planes r.(2i+2j+2k)=11 and 4x-2y+2z = 15

Part - III

Answer any 7 questions: Question no. 40 is compulsory:

7x3 = 21

- 31) Solve by Cramer's rule: x+y-z=3; 3x-2y+3z=5; 2x-3y+4z=1
- 32) If |z| = 2, show that $3 \le |z+3+4i| \le 7$
- 33) Find a polynomial equation of minimum degree with rational coefficients, having $2 + \sqrt{3}i$ as a root.
- 34) A concrete bridge is designed as a parabolic arch. The road over bridge is 40 m long and the maximum height of the arch is 15 m. Write an equation of the parabolic arch.
- 35) Find the point of intersection of the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$
- 36) Find the equation of the tangent and normal to the curve $y = x^2 + 3x 2$ at the point (1, 2)
- 37) Evaluate: $\frac{3}{2} \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx$
- 38) Solve: $\frac{dy}{dx} = (3x+y+4)^2$
- 39) If X is the randam variable with distribution function $f(x) = \begin{pmatrix} 0 & x < 0 \\ x & 0 \le x < 1 \\ 1 & 1 \le x \end{pmatrix}$ then find (i) probability density function f(x) (ii) $P(0.2 \le X \le 0.7)$
- 40) Construct the truth table for $(\neg p \rightarrow r) \land (p \leftrightarrow q)$

Answer all the questions:

7x5 = 35

41) a] Solve the following system of linear equations by Gaussian elimination method. x-y+2z = 2, 2x+y+4z = 7, 4x-y+z = 4

(OR)

- b) A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If water flows into the tank at a rate 10 cubic meter per minutes, how fast is the depth of the water increases when the water is 8 meters deep?
- 42) a] Solve the equation z³+8i = 0 where z∈c.

(OR)

- b] Find the area of the region bounded between the parabolas $y^2 = 4x$ and $x^2 = 4y$.
- 43) a] It is known that the roots of the equation $x^3-6x^2-4x+24=0$ are in arithmetic progression. Find its roots.

b] Solve:
$$(1+x^3)\frac{dy}{dx} + 6x^2y = 1+x^2$$

44) a] Solve:
$$tan^{-1} \frac{x-1}{x-2} + tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$

(OR)

- b] The probability density function of x is given by $f(x) = \begin{cases} K & 1 \le x \le 5 \\ 0 & \text{otherwise} \end{cases}$ find (i) distribution function (ii) P(X < 3) (iii) P(2 < x < 4) (iv) $P(3 \le X)$
- 45) a] Find the equation of the circle passing through the points (1, 0) (-1, 0) and (0, 1)

(OR)

- b] Find the vector and Cartesian equations of the plane containing the line $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$ and passing through the point (-1, 1, -1)
- 46) a] Prove that among all the rectangles of the given perimeter, the square has the maximum area.

(OR)

- b] A rod of length 1.2 m moves with its ends always touching the co-ordinate axes the locus of point P on the rod, which is 0.3 m from the end in contact with x-axis is an ellipse. Find the eccentricity.
- 47) a] Let $g(x, y) = 2y + x^2$, x = 2r s, $y = r^2 + 2s$, r, $s \in R$ find $\frac{\partial g}{\partial r}$, $\frac{\partial g}{\partial s}$

(OR)

b] Verify (i) closure property (ii) commutative property (iii) associative property (iv) existence of identify and (v) existence of inverse for the operation +6 on Z6 using table corresponding to addition modulo 6.