Virudhunagar District

Common Half Yearly Examination - December 2025

Standard 9

Time: 3.00 Hrs.

MATHEMATICS

Marks: 100

PART-I

I.		ose the best answe			14×1=14
	1)	If $B\subseteq A$ then $n(A\cap B)$	is	-1 - (0 4)	15 - 745
		a) n(A-B)	b) n(B)	c) n(B-A)	d) n(A)
	2)	a) $n(A-B)$ b) $n(B)$ c) $n(B-A)$ d) $n(A)$ If $n(A \cup B \cup C) = 100$, $n(A) = 4x$, $n(B) = 6x$, $n(C) = 5x$, $n(A \cap B) = 20$, $n(B \cap C) = 15$, $n(A \cap C) = 25$ and $n(A \cap B \cap C) = 10$ then the value of x is			
		,		c) 25	
	3)	S = The set of all le	ap years between 1	882 and 1906 then	cardinal number
		of set $S = \underline{\hspace{1cm}}$.		San Standard States	
		a) 5		c) 12	d) 25
	4)	Which one of the fo	llowing has a termin	ating decimal expan	nsion?
		5	8	14	
		a) $\frac{5}{64}$	b) $\frac{1}{0}$	c) $\frac{14}{15}$	d) $\frac{1}{12}$
				13	12
	5)	$4\sqrt{7} \times 2\sqrt{3} = \underline{\hspace{1cm}}$	- 1 1 1 141 373		
		a) $6\sqrt{10}$	b) 8√21	c) 8√10	d) $6\sqrt{21}$
	0.00	(=\n			
	6)	$(\sqrt[n]{a})^n =$			
		a) n	b) √n	c) a	d) √a
	71				u) va
	1)	Degree of the polyr	iomiai (y=-2) (y=+1) 15	٦) ٢
	0)		b) 2	c) 3	d) 6
91	8)	Which of the follow			
	-	a) (2, 4)	b) (4, 2)	c) $(3, -1)$	a) (U, 6)
	9)	Polygon having any	one of the interior	angle greater then	180° is
		a) Regular polygon		b) Concave polygo	n .
	40)	c) Convex polygon	- I- ADOD	d) None of the abo	ove
1	10)	In a cyclic quadrila	terals ABCD, $\angle A = 4$	x , $\angle C = 2x$ then val	ue of x is
		a) 30°		c) 15°	
	11)	If $(x+2, 4) = (5, y-4)$	-2), then the coordi	nate (x, y) are	
	400	a) (7, 2) b) (6, 3) c) (3, 6) d) (2) The ratio in which the x-axis divides the line segment joining			
	12)	The ratio in which	the x-axis divides	the line segment	oming the points
		(6, 4) and (1, -7) i a) 2:3	5	c) 4:7	d) 4:3
		a) 2:3	0) 3:4		u) 4.3
22 3	13)	If $\sin 30^\circ = x$ and $\cos x$	$\cos 60^\circ = y \text{ then } x^2$	+y² IS	
F.,		a) 1/2	b) 0	c) sin 90°	d) cos 90°
	14)	The value of tan1º	tan2º tan3º	tan89° is	5
		a) 0	b) 1	c) 2	. d) $\frac{\sqrt{3}}{2}$
		a) 0		0, 2	2
	PART - II Answer any 10 questions: [O.No. 28 is compulsory] 10×2=20				
11.	ati fillower any to decome to I for				
	15)	If $R = \{l, m, n, o, p\}$ and $S = \{j, l, n, q\}$ find $R\Delta S$. If $A = \{1, 3, 5\}$, $B = \{2, 3, 5, 6\}$ then verify $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.			
	16)	If $A = \{1, 3, 5\}, B$	$= \{2, 3, 5, 6\}$ then \	$Verify \Pi(A \cup B) = \Pi(A)$)+11(b)-11(A(b).
	U			-7 2	THE STREET STREET
	17)	Find any four ration	nal numbers betwee	$\frac{1}{11}$ and $\frac{1}{11}$.	**************************************
	18)	Write in scientific notation: (300000) ² ×(20000) ⁴			
	19)	The length of a rectangle is $(3x+2)$ units and its breadth is $(3x-2)$ unit. Find			
	,	its are in term of x. What will be the area if x=20 units?			
	201	20) Evaluate by using identities: 1001 ³			
	21)	Find the value of	K for which the sve	stem of linear equa	ation $8x+5y = 9$,
	/	Kx+10y = 15 has n			F-10-10

V9M

22) In a quadrilateral ABCD, $\angle A = 72^{\circ}$ and $\angle C$ is the supplementary of $\angle A$. The other two angles are 2x-10 and x+4. Find the value of x and the measure of all the angles.

23) A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the

length of the chord.

24) If (x, 3), (6, y), (8, 2) and (9, 4) are the vertices of a parallelogram taken order, then find the value of x and y.

25) Find the centroid of the triangle whose vertices are (2, -4), (-3, -7) and (7, 2).

26) Find the value of $8\sin 2x \cos 4x \sin 6x$, when $x = 15^{\circ}$.

27) Find the angle made by ladder of length 10m with the ground, if one of its end is 5m away from the wall and the other end is on the wall.

28) Simplify: $\sqrt{112} - \sqrt{252} + \sqrt{28}$

PART-III

III. Answer any 10 questions: [Q.No. 42 is compulsory]

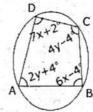
10×5=50

29) Verify A-(B∩C) = (A-B) ∪ (A-C) using Venn diagrams.

30) In a college, 240 students play cricket, 180 students play football, 164 students play hockey, 42 play both cricket and football, 38 play football and hockey, 40 play both cricket and hockey and 16 play all the three games. If each student participate in atleast one game, then find (i) the number of students in the college (ii) the number of students who play only one game.

31) Find the value of a and b if $\frac{\sqrt{5}-2}{\sqrt{5}+2} = a+b\sqrt{5}$.

32) Arrange surds in descending order: $\sqrt[2]{35}$, $\sqrt[3]{47}$, $\sqrt{\sqrt{3}}$


33) Is (3x-2) a factor of $3x^3+x^2-20x+12$?

34) Factorise: $x^3+x^2-14x-24$

35) Solve by Cross Multiplication method: 6x+7y = 11; 5x+2y = 13

36) Prove that in a parallelogram, opposite sides are equal.

37) Find all the angles of the given cyclic quadrilateral ABCD in figure.

38) Show that the point A(7, 10), B(-2, 5), C(3, -4) are the vertices of a right angled triangle.

39) The vertices of a triangle are (1, 2), (h, -3) and (-4, k). If the centroid of the triangle is at the point (5, -1) then find the value of $\sqrt{(h+k)^2 + (h+3k)^2}$.

40) If $\sec \theta = \frac{13}{5}$, then show that $\frac{2\sin \theta - 3\cos \theta}{4\sin \theta - 9\cos \theta} = 3$.

Find the value of tan7° tan23° tan60° tan67° tan83°.

42) If $A = \{0, 2, 4, 6, 8\}$, $B = \{x: x \text{ is a prime number and } x < 11\}$ and $C = \{x : x \in \mathbb{N} \text{ and } 5 \le x < 9\} \text{ then verify } A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

PART-IV

IV. Answer all the questions:

43) Construct the centroid of $\triangle PQR$ whose sides are PQ = 8 cm, QR = 6 cm, (OR) PR = 7 cm. Construct $\triangle ABC$ in which AB = BC = 6 cm and $\angle B = 80^{\circ}$. Locate its incentre and draw the incircle.

44) Draw the graph: $y = \left(\frac{2}{3}\right) \times +3$ Solve graphically: x+y=7; x-y=3